Generalized Newton Methods for the 2d-signorini Contact Problem with Friction in Function Space

نویسندگان

  • Karl Kunisch
  • Georg Stadler
چکیده

The 2D-Signorini contact problem with Tresca and Coulomb friction is discussed in infinitedimensional Hilbert spaces. First, the problem with given friction (Tresca friction) is considered. It leads to a constraint non-differentiable minimization problem. By means of the Fenchel duality theorem this problem can be transformed into a constrained minimization involving a smooth functional. A regularization technique for the dual problem motivated by augmented Lagrangians allows to apply an infinite-dimensional semi-smooth Newton method for the solution of the problem with given friction. The resulting algorithm is locally superlinearly convergent and can be interpreted as active set strategy. Combining the method with an augmented Lagrangian method leads to convergence of the iterates to the solution of the original problem. Comprehensive numerical tests discuss, among others, the dependence of the algorithm’s performance on material and regularization parameters and on the mesh. The remarkable efficiency of the method carries over to the Signorini problem with Coulomb friction by means of fixed point ideas. Mathematics Subject Classification. 49M05, 49M29, 74M10, 74M15, 74B05. Received: July 13, 2004. Revised: March 4, 2005.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Contact Problems with Coulomb Friction

The paper deals with a discrete model of a two-dimensional Signorini problem with Coulomb friction and a coefficient of friction F depending on the spatial variable. It is shown that a solution exists for any F and is unique if F is sufficiently small. We also prove that this unique solution is a Lipschitz continuous function of F . Numerical realization is done by the piecewise smooth Newton m...

متن کامل

Numerical Solution of 2D Contact Shape Optimization Problems Involving a Solution-Dependent Coefficient of Friction

This contribution deals with numerical solution of shape optimization problems in frictional contact mechanics. The state problem in our case is given by 2D static Signorini problems with Tresca friction and a solution-dependent coefficient of friction. A suitable Lipschitz continuity assumption on the coefficient of friction is made, ensuring unique solvability of the discretized state problem...

متن کامل

Smooth dependence on data of solutions and contact regions for a Signorini problem

We prove that the solutions to a 2D Poisson equation with unilateral boundary conditions of Signorini type as well as their contact intervals depend smoothly on the data. The result is based on a certain local equivalence of the unilateral boundary value problem to a smooth abstract equation in a Hilbert space and on an application of the Implicit Function Theorem to that equation.

متن کامل

Numerically and parallel scalable TFETI algorithms for quasistatic contact

This paper deals with the solution of the discretized quasistatic 3D Signorini problems with local Coulomb friction. After a time discretization we obtain a system of static contact problems with Coulomb friction. Each of these problems is decomposed by the TFETI domain decomposition method used in auxiliary contact problemswith Tresca friction. The algebraic formulation of these problems in 3D...

متن کامل

Numerical Methods for Dynamic Contact and Fracture Problems

The present work deals with the numerical solution of dynamic contact and fracture problems. The contact problem is a Signorini problem with or without Coulomb friction. The fracture problem uses a cohesive zone model with a prescribed crack path. These problems are characterized by a non-regular boundary condition and can be formulated with evolutionary variational inequations or di erential i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005